Helioseismic analysis of the solar flare - induced sunquake of 2005 January 15
نویسندگان
چکیده
We report the discovery of one of the most powerful sunquakes detected to date, produced by an X1.2-class solar flare in active region 10720 on 2005 January 15. We used helioseismic holography to image the source of seismic waves emitted into the solar interior from the site of the flare. Acoustic egression power maps at 3 and 6 mHz with a 2 mHz bandpass reveal a compact acoustic source strongly correlated with impulsive hard X-ray and visible-continuum emission along the penumbral neutral line separating the two major opposing umbrae in the δ-configuration sunspot that predominates AR10720. At 6 mHz the seismic source has two components, an intense, compact kernel located on the penumbral neutral line of the δ-configuration sunspot that predominates AR10720, and a significantly more diffuse signature distributed along the neutral line up to ∼15 Mm east and ∼30 Mm west of the kernel. The acoustic emission signatures were directly aligned with both hard X-ray and visible continuum emission that emanated during the flare. The visible continuum emission is estimated at 2.0×10 23 J, approximately 500 times the seismic emission of ∼ 4×10 20 J. The flare of 2005 January 15 exhibits the same close spatial alignment between the sources of the seismic emission and impulsive visible continuum emission as previous flares, reinforcing the hypothesis that the acoustic emission may be driven by heating of the low photosphere. However, it is a major exception in that there was no signature to indicate the inclusion of protons in the particle beams thought to supply the energy radiated by the flare. The continued strong coincidence between the sources of seismic emission and impulsive visible continuum emission in the case of a proton-deficient white-light flare lends substantial support to the " back – warming " hypothesis, that the low photosphere is significantly heated by intense Balmer and Paschen continuum-edge radiation from the overlying chromosphere in white-light flares.
منابع مشابه
5 Properties of Flares - Generated Seismic Waves on the Sun A
The solar seismic waves excited by solar flares (" sunquakes ") are observed as circular expanding waves on the Sun's surface. The first sunquake was observed for a flare of July 9, 1996, from the Solar and Heliospheric Observatory (SOHO) space mission. However, when the new solar cycle started in 1997, the observations of solar flares from SOHO did not show the seismic waves, similar to the 19...
متن کاملProperties of the 15 February 2011 Flare Seismic Sources
The first near-side X-class flare of the Solar Cycle 24 occurred in February 2011 and produced a very strong seismic response in the photosphere. One sunquake was reported by Kosovichev ( Astrophys. J. Lett. 734, L15, 2011), followed by the discovery of a second sunquake by Zharkov, Green, Matthews et al. ( Astrophys. J. Lett. 741, L35, 2011). The flare had a two-ribbon structure and was associ...
متن کاملCorrection of SOHO CELIAS/SEM EUV Measurements Saturated by Extreme Solar Flare Events
The solar irradiance in the Extreme Ultraviolet (EUV) spectral bands has been observed with a 15 s cadence by the SOHO Solar EUV Monitor (SEM) since 1995. During remarkably intense solar flares the SEM EUV measurements are saturated in the central (zero) order channel (0.1 – 50.0 nm) by the flare soft X-ray and EUV flux. The first order EUV channel (26 – 34 nm) is not saturated by the flare flu...
متن کاملSolar Latitudinal Distribution of Solar Flares around the Sun and Their Association with Forbush Decreases during the Period of 1986 to 2003
Solar flare events of high importance were utilised to study solar latitudinal frequency distribution of the solar flares in northern and southern hemisphere for the solar cycle 22 to recent solar cycle 23. A statistical analysis was performed to obtain their relationship with sudden storm commencement (SSCs) and Forbush decrease events (Fd) of cosmic ray intensity. An 11-year cyclic variation ...
متن کاملToward an Efficient Prediction of Solar Flares: Which Parameters, and How?
Solar flare prediction has become a forefront topic in contemporary solar physics, with numerous published methods relying on numerous predictive parameters, that can even be divided into parameter classes. Attempting further insight, we focus on two popular classes of flare-predictive parameters, namely multiscale (i.e., fractal and multifractal) and proxy (i.e., morphological) parameters, and...
متن کامل